
Three. Some Elements of Computing

We already know, this chapter is some kind of a help for all those readers coming from 
outside the realm of computing. To understand so many things that we get in the later 
chapters, we need it here. The ruling theme of the book is the political economy of power 
and control operating in the cyberspace as a particular moment of the hegemony of capital,  
and the politics of resistance towards this control. This word ‘cyberspace’ is more from the 
world  of  sci-fi  and  Internet-pop,  than  any  word  meant  for  serious  communication. 
Wikipedia defines, ‘cyberspace’ means the “electronic medium of computer networks in 
which  online  communication  takes  place”.  Weboepedia  suggests,  ‘cyberspace’  is  “a 
metaphor for describing the non-physical terrain created by computer systems”. We are 
using this word ‘cyberspace’ in a pretty general way in this book. Wherever we are saying 
any computer-related thing  – making of computers, or, computer industry with both its 
segments, software and hardware, or, the teaching of computer science, the understanding 
of it, on both the technical and common plane – that is, everything in/around/through the 
computers. We are deploying this term freely, as an all-encompassing one. 

The power and control operating in this cyberspace is the backdrop, against which we want 
to explore the philosophical implications of GPL: how GNU GPL tweaked the concept of 
‘property’ in  the  context  of  this  cyberspace.  By  the  time  of  the  birth  of  GPL,  this 
cyberspace  was  moving  down  the  lane  of  primitive  accumulation.  Before  going  into 
primitive accumulation, let us have a note about this word ‘tweak’. This word has a surplus 
meaning specially for this book on political economy of computing. We are importing it  
from the world of computing into the field of political economy. The word ‘tweak’ means 
to displace and reconstruct, and indeed, something more than that. It carries the sense of 
‘pluck’,  ‘pinch’ or  ‘twist  sharply’.  In  the  realm  of  software  development,  pieces  of 
software  continuously  go  through  code-writing,  editing,  debugging,  recycling  and 
customization. Tweaking means how a software developer takes up an existing program, 
and goes on displacing and reconstructing it to achieve a program that suits the purpose 
more appropriately. For a full elaboration of all the nuances of the real process of ‘tweak’,  
its inherent dynamics and surplus meanings, see the seminal essay Raymond 2000.

Once the primitive accumulation is complete, all petty producers, the owners of the means 
of production, land or tools or otherwise, get divorced from the ownership of these. This is  
done, in order to establish the capitalist market rules and capitalist property system. This is 
the way things have happened in history during the rise of capitalism. Something very 
much like this started happening in cyberspace too. And the stake here in cyberspace was 
of  a  huge  import,  both  ethically  and  philosophically.  The  property  that  was  getting 
divorced from its prior owner was a common property of all human beings. In fact, maybe 
it is the oldest form of property, the mother of all properties, that is, knowledge. Later we 
will know in details, how the same chain of events as in ‘primitive accumulation’ started 
repeating  itself  in  cyberspace  too.  This  time  the  expropriation  involved  software  in 
particular, knowledge resource in general. We will know the story of its unfolding, through 
the  supplements  of  resistance,  a  text  called  GPL,  and  a  context  called  FLOSS  that 
followed, in the negotiations and counter-negotiations around the proprietorship software. 
Some  new  horizons  of  political  economy  were  encountered  here,  some new  areas  of 
postcolonial theory, the topology of which this book ventures to explore. Let us remember, 
software  was  one  of  the  most  capital-intensive  and  capital-generating  form of  reified 
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knowledge in history.

Now, here comes a problem. Talking about this newer kind of power and control involves 
materials that are not exactly from the realm of classical political economy. The kind of 
reason and logic that we are trying to develop in this book encloses and touches upon some 
elements definitely from hardcore computing. So, for the sake of making some new lands 
available  to  political  economy,  we  now  engage  in  an  unavoidable  digression.  This 
digression, at times, verges on oversimplification, at times quite verbose. But we cannot 
avoid it in order to return to the crux of our discussion. In this chapter, we address a few 
questions like, what is FLOSS, or, what is Free and Open Source, or, before that, what is 
Source  Code.  And  also  we  explicate  some  other  elements  that  are  necessary  for 
understanding these questions and our chief strand of logic. Without these elements it is 
hardly possible to elaborate the process of power and control in the cyberspace, against 
which  GPL  emerged.  Anyone  with  some  elementary  knowledge  of  computing  can 
comfortably skip this chapter.

1. Functional Components of a Computer 
Before understanding what  is  Source Code,  and how it  is  controlled,  we first  need to 
understand a bit about computer basics. Let us begin from the beginning, with a PC sitting 
there on the table top. Obviously, a PC, or, a Personal Computer, is just one of the various 
forms of computers in today’s world, but, here, for this book, it will be adequate to start  
from a schematic picture of a PC.

Here we attached five tags for the very common component types usually available in a 
PC. The keyboard and the mouse for Data Input, the console and the sound-box as Data 
Output.  The  HDD,  Hard-Disk-Drive,  the  FDD,  Floppy-Disk-Drive,  and  the  CD-ROM 
Drive are listed both as Data Input and Data Storage components. And the Processor chip,  
the RAM and ROM chips held on the Mother-board are listed as Data Processing and 
Control  components.  These schematic categories  are not watertight  compartments.  One 
component  meant  primarily  for  a  particular  use can very well  overlap into other  uses. 
Obviously, there are infinitely many kinds of peripherals, and quite a few of them come 
into usage that fall in more than one tags. Like, you can very much take some outputs on a 
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HDD and fix this HDD to some other computer, thus using it as an input device in the 
second machine. Without going into details of nonstandard use of components, or, debating 
about what standard use is, we are just trying to build a scheme of simple categories here. 
So, the categories are:

I. Data Input

II. Data Storage

III. Data Processing

IV. Data Output

V. Control

A scheme is already there, inscribed in the very way we wrote the list – we will come back 
to this scheme quite soon. Let us now start from the question: why in the history of all  
machines that man has made, does computer have a special position? The very special 
position of computer becomes very clear when we compare a computer with a calculator.  
That difference actually resides in the fifth element of our list: Control. Let us elaborate the 
difference – this difference has got a very interesting logical point implicit in it. There is a 
logical  leap  here  that  instantaneously  makes  computer  and  entirely  different  kind  of 
machine, different from all other prior machines in the history of civilization. To properly 
understand this logical leap, we need a diagram of a scheme, created by Von Neumann, the 
celebrated  physicist,  mathematician,  computer-scientist.  It  is  called  the  ‘Von  Neumann 
Architecture of Stored Program Computers’. Obviously there are many more interesting 
deployments of Von Neumann Architecture than the one here in this book. Here we are 
using a simplified version of the scheme, more fit for our purpose. Tanenbaum 2005 has 
good discussions about Von Neumann Architecture.

This diagram gives a customized and simplified version of Von Neumann Architecture, that 
is  now  a  classic  in  the  history  of  Computer  Science,  a  regular  text  material  of  the 
elementary classes. We can readily recognize the five units within the scheme with the list 
given above. The first and fourth elements in our list, Input and Output, are shown in the 
lower part of the diagram. The arrows show the path of data going into the machine and 
coming out from it. Both Input and Output are linked to the Arithmetic and Logic Unit of 
the  machine,  frequently  called  by  its  acronym ALU. This  ALU and  Memory are  both 
connected to  Control Unit, the fifth element of our list. The second one of the list,  Data 
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Storage, is obviously represented by  Memory in the diagram. This includes both RAM, 
Random-Access-Memory, and ROM, Read-Only-Memory. Both RAM and ROM act as 
storage device or Memory. RAM and ROM are quite common terms in standard computer 
literature, and quite familiar to any average user. As the names suggest, they define two 
categories of memory. RAM is a kind of memory that can be accessed, that is read from or 
written to, at will or at random. And ROM is usually written once and read as many times  
as one needs. For the functioning of computer some amount of RAM is kept on silicon 
chips  on  the  motherboard  of  a  machine,  called  RAM  chips.  And  the  very  primary 
instruction for activating a machine or booting it, is usually kept on a chip of the ROM 
kind  and  it  is  called  BIOS,  Basic-Input-Output-System,  set  on  the  motherboard  of  a 
computer. The other memory storage devices like HDD can be both used as RAM or ROM. 
Here, Memory in the diagram means all kinds of memory devices. 

The remaining element in the list of functional components, Data Processing, the third one 
in the list, does actually reside in two parts,  Memory and  ALU in the diagram. The data 
that comes in through Input goes to Memory and resides there, waiting there to be recalled 
by  ALU  for  Arithmetic  and  Logical  processing.  And  at  last,  when  the  processing  is 
finished, it goes out through Output. Or, it goes to a storage device, which is another form 
of output. So, in every sense of the term, the procedure of data processing is very definite 
and finite. And if it is really like that, some agency has to look after it, when and how every 
bit and piece of this procedure does start or end. And exactly this job is looked after by  
Control. A program, created by human beings, is put there for  Control in the form of a 
‘stored program’. This program does the job of controlling the procedure. So, the activity 
of control, that was till now an entirely human prerogative, at last starts residing within a 
machine. Computer can represent human control – this is the mystery of the very special 
position of computer among all hitherto machines. This point will become clear very when 
we discuss about a calculator. 

Now, let us discuss the difference between computer, and say, calculator. Both of them 
handle digital data, but, still, calculator is not computer. But, why? Let us iterate the steps 
during  one  simple  calculation,  say  addition,  of  two  and  three,  using  calculator.  So, 
mathematically,  the  question  is  2  +  3  =  ?,  the  answer  to  which  will  be  provided  by 
calculator. The steps are pretty easy, we strike the keypad, the three switches one after  
another, ‘2’, ‘+’, and ‘3’, and then, to get the answer we strike the key ‘=’, and the result is  
displayed on the screen. So, let us structure the procedure. We go to  Input Device, insert 
Raw Data, ‘2’, then one Command Data, ‘+’. This  tells calculator exactly what it has got 
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to do. Then again we insert another piece of Raw Data, ‘3’, then another Command Data, 
‘=’. Now, with all data inserted till now into it, stored in its Memory, both Raw Data and 
Command Data, calculator processes all Raw Data with the actions meant by Command 
Data, and shows the result on Output Device. So, the Functional Parts used here are Input  
Device,  Memory,  Processor,  and  Output Device.  Where is  Control? It is not there, and 
exactly that is why calculator is not computer. All through the mathematical job done on 
calculator, Control remained with the human user. The human user feeds in data, both Raw 
data and Command data, in their proper sequence. And only then the result relevant to the 
human subject comes out from it. Calculator does everything except control. Exactly this 
lack  is  shown  by  the  void  in  the  box  in  the  calculator  diagram,  waiting  for  human 
intervention to take place. 

Later in this chapter we will cite a very short program, ‘add.c’, written in the high-level 
language C. This program does exactly the same thing – add 2 and 3 and give the sum. But, 
the difference in case of running this program on computer is that, the whole thing can 
now, through this small program, reside within a computer’s  Control. And the program 
goes on doing the whole job without any human intervention. There are actually many 
layers of so-called ‘stored program’ residing within a computer, about which we will know 
later in details. The lowermost layer is that of the very primary program called Kernel. We 
can call this primary program as Operating System too, without going into many complex 
debates.  This  primary  program  called  OS  or  kernel  then  allows  and  enables  all  later 
programs to run on the machine. So, all through the workings of computer, all the stored 
programs represent the element of  human control. Understanding this method of control 
deployed through all these layers of ‘stored program’ is actually very crucial to us. Without 
it we cannot understand the political economy of computing that we are going to discuss in 
the later chapters of this book. We are coming back to this human control working in layers 
later in this chapter. 

We are familiar with machines that do many kinds of jobs. But, in earlier times, many 
machines were built for some special purposes. A lot of these machines were specifically 
meant for doing mathematical, or better, numeric jobs. From time immemorial humankind 
is making machines for doing numeric jobs, once popularly called ‘number crunchers’.  
These machines are of all types, like Abacus, Logarithmic Tables, Slide-Rules, ‘Napier’s 
Bones’,  Pascal’s  ‘Pascaline’,  ‘Analytical  Engine’ by  Babbage,  and many such,  till  the 
arrival of calculator or computer in the recent times. Within numeric machines, computer 
has its pride of place, because, as we said, for the first time in history, humankind could  
vest the control thing into the heart of a machine. Till now this was absolutely a human 
action. That is the beauty of a ‘stored program’, and that is the beauty of the Von Neumann 
Architecture of a ‘stored program computer’. A stored program is the cleverest ruse in the 
history of human knowledge that relieves humankind of the responsibility of remaining in 
control, by supplying a flawless deputy.  

2. ‘Bit’ and Representation of Data 
We want to understand the concept of ‘stored program’ more intimately. Source code is 
actually the most primary form of ‘stored program’. To go into ‘source code’, we need to 
discuss some preliminaries a bit more. And, and in this case, this bit is a ‘bit’, literally. ‘Bit’ 
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is the short form of ‘Binary-Digit’, the building block of data. Everything that happens in a 
computer  happens  around  this  thing  called  data,  in  both  the  forms  – raw  data and 
command/instruction data. Any work on computer starts with input of data, which is then 
processed  by  programs.  A stored  program  is  made  of  collections  of  instruction  data, 
augmented by raw data for the execution of these instructions. After the stored program 
runs, the result is shown in output data. Now, the question is, what exactly is ‘data’ for 
computer? How does computer represent, structure and understand data?

The simplest answer of any question is either a ‘yes’ or a ‘no’, or, in numeric terms, a 1 or 
a 0. So, how much memory it would involve to hold or represent this simplest answer to a 
question? Obviously,  the exact amount of memory space that  can hold a 1 or 0.  And, 
exactly this amount of memory space is called a ‘bit’ – the space that is enough to represent 
any  one  of  the  two  binary  digits,  0  or  1.  This  is  the  smallest  unit  of  memory.  So, 
mathematically  speaking, the value of  a  bit  can be either  1  or  0,  depending on which 
number  is  stored  at  that  exact  moment  in  that  bit  of  memory.  In  terms  of  computer 
architecture, this this may mean presence or absence of a certain amount of current in a 
circuit, like when a machine is either ‘on’ or ‘off’ – it will get interpreted as 1 or 0, and get 
written or represented in that bit of memory space as 1 or 0. In fact, in the real case, this is  
done with a particular voltage getting interpreted as 1 and another as 0. This goes with 
common  sense  too.  The  computer  cannot  write  a  0,  or  for  that  matter,  cannot  write 
anything at all, if it goes actually ‘off’. Handling information in terms of bits, in terms of  
0/1, is actually a thing of convenience. The devices that operate around data  – the input, 
output,  and processing  devices,  their  circuitry  – all  these  can  run  most  reliably  when 
operating in this two-state binary mode. And the moment we start keeping information in  
terms of bits, this renders the size or volume of data as measurable – the amount of data 
can be exactly measured. 

This is not just true for the simplest form of data. Complex or composite forms of data can 
be transformed into simple data and handled that way. In terms of logical structure, this is 
more like a procedure that metes out a complex question or problem into simpler parts and 
replies  them  in  the  binary  yes/no.  This  procedure  of  representing  bigger  blocks  of 
information into the simplest terms of binary 1/0 can be clearer with a simple example. Let  
an archive library have some rare texts highly in demand. Say on the library message board 
there is a slot for the name of the text, and below it there is a light. If the text is available at 
the moment, the light will be on, otherwise off. For this simple piece of information the 
light-paradigm is  quite adequate.  But,  this  signal  system breaks down the moment the 
library wants to convey some additional information, like, say, if the text is in paper form 
or microfilm. Obviously another light, a second one, solves the problem. For every state of 
the first light, ‘on’ or ‘off’, available or not, there can be two states of the second light, ‘on’ 
or ‘off’, paper or microfilm. So, in terms of composite signals there are four states:

00: 0 & 0: Unavailable & Microfilm: off & off
01: 0 & 1: Unavailable & Paper: off & on
10: 1 & 0: Available & Microfilm: on & off
11: 1 & 1: Available & Paper: on & on

These four number strings that the lights generated, 00, 01, 10, 11 are just the first four 
numbers in  a binary system. These four binary numbers become 0,  1,  2,  3 in  decimal 
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system, the system we generally use. This area of arithmetic, Binary or Decimal number 
system, is quite a large area on its own, with many dedicated text books. For the time being 
let us simply define it this way: while in Decimal system, we work with 10 digits, 0 to 9, in 
Decimal system we work with 2 digits, 0 to 1. All other arithmetic rules apply to them in 
exactly the same way. There are other popular number systems too. Like Octal system that 
uses 8 digits, 0 to 7, or Hexadecimal that uses 16 digits, 0 to 9 and A to F. Binary, Octal 
and Hexadecimal systems are applied a lot in Computer Science. Mano 2003, Rajaraman 
and Radhakrishnan 2006 can provide good brief introduction to these. 

We  may  want  to  handle  a  more  complex  situation  than  the  earlier  one  with  four 
possibilities. Say, the library wants to convey, if the texts are copyrighted or not, another 
bit  can  be  used  with  the earlier  two.  With  another  bit  place-holder,  the  strings  it  will 
generate  are,  000,  001,  010,  011,  100,  101,  110,  111,  in  binary  system.  These  binary 
numbers, in decimal terms, are 0, 1, 2, 3, 4, 5, 6, 7. Total number of composite signals in 
this last case is 8. In the second case it was 4. And, in the simplest one-question scenario, 
the total number of signals was 2. Maybe we can already see the regularity there. 2 is 21, 4 
is 22, and 8 is 23. This is pretty predictable, if we compare the results with decimal system. 
The number of digits in binary system is two, 1 and 2. And so, every added bit increases 
the number of possible signal by a factor of 2. For each and every combination of the 
earlier bits, this new added bit adds a possibility factor of 2, either a 1 or a 0. 

But, as we can see, there is already a problem. Each of the three criteria that we used, 
‘availability or not’, ‘paper or not’, ‘copyrighted or not’, is answerable in binary mode: 
yes/no, or, 0/1. If there are complex criteria, not answerable in binary, this method does not  
work any more. Though, it can be made to work, in a roundabout way, by writing down 
every  possible  situation  generated  by  the  complex  criterion,  and  then  converting  this 
situation  into  a  binary  criterion.  Like  say,  some  texts  are  known  for  their  spectral 
connection. Now, this question can be broken into composite simpler questions. Does a 
specter haunt us if we read it, answerable in binary. But, then comes a question, a complex 
one, which kind of specter it is: a spook, a phantom, a bogeyman, a hobgoblin? We can 
mete out this complex question into simpler ones answerable in binary, like, does the text  
cause a spook to haunt? Does it cause a phantom? Like this, it is always possible to create 
a signal system that can send composite signals in terms of simple bit signals. But, why 
should one go into all that trouble, an age-old time-tested signaling system always already 
remaining  there?  And  that  signaling  system  is  our  good  old  language,  written  or 
represented by our good old alphabet. But, this representation needs ASCII.

3. Text and ASCII
ASCII is the acronym for American-Standard-Code-for-Information-Interchange.  ASCII is 
a coding scheme that assigns numeric values to letters, numbers, punctuation marks, and 
other  characters.  And  thus,  ASCII  code  enables  computers  and computer  programs to 
exchange information between them. It has two sets of codes, Standard and Extended. The 
Standard system has 128 characters. And the Extended system has 256 characters,  128 
characters added to the 128 of the Standard system. That means 128 or 27 characters for the 
Standard set, and 256 or 28 for the Extended set, with one added bit. Very soon we are 
going  to  understand  its  significance.  In  standard  ASCII,  values  are  assigned  to 
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communication and control codes for print or display. Here is a very important point to 
understand. To display a  piece of text  we not only need alphabets to  display,  but also 
control characters too, like where to start, where to end, how much space to leave between 
them, and so on. There are quite a few of those non-printing characters without which the 
printing characters cannot be displayed in any meaningful combination. So, a code like 
ASCII must include them too. This phrase is not exactly thisphraseisnotexactly. 

Once ASCII is there, the problem of meting out the complex data into bits of simple data,  
transfigures into a problem of representing language in terms of bits. First, let us get a 
measure of how many simple yes/no binary answers a particular amount of data can hold. 
We just saw that, 1 bit can represent two simple answers, 2 bits can represent four, and 3  
bits can represent eight. And let us note another point that the position of the bits are not 
random. When more than one bits are involved, the order of the bits is a part of the data 
too. The position and value of a bit replies to a specific binary-answerable answer. For  
number of bits being 1, 2, 3, 4, 5, 6, 7, or 8, the number of representable composite events 
are respectively 2, 4, 8, 16, 32, 64, 128, or 256. So, now, let us take up the problem of 
representation  of  language.  Representing  language  can  be  done  by  representing  every 
character by a different number. This enables us to translate any other possible signaling 
system into language, and thus, to transform it into data. Once that is done, computer can  
process it. Let us remind ourselves once again, all these discussions here are more than an 
oversimplification. In terms of computing science all these things are quite commonplace 
and elementary, available in any standard textbook.  

Let us take this language, English, as our example. This involves the Latin Alphabet, with 
26 members, each of them in both upper and lower case, and hence 52 of them. Then there 
are 10 digits, 0 and 1 to 9. Then are the symbols of syntax like the period, the comma, the  
colon and so on. Let us add to them all the non-printing characters too, like the ‘newline’ or 
the ‘tab’ and so on. The effect of these characters are visually present, though absent in 
terms of symbols in the presented form of text – these are so necessary for any reasonable 
representation of text. The aggregate goes over seventy. So, at least how many bits must be 
there to represent these seventy-plus characters? As we have seen, six bits will allow at 
most 26 or only sixty-four of them. So, we shall need at least seven bits. These seven bits 
together,  in  the  form of  a  ordered  sequence  of  bits,  can  represent  27 or  128 different 
characters. The first of these ordered strings will be, in binary system, 0000000, that is 0 in 
decimal. And the last one will be 1111111, that is 127 in decimal. So, we get 0 to 127, or 
128 of them in aggregate. Transforming to and fro between binary and decimal is quite 
easy, taking our familiar decimal arithmetic as a model. Like, say, 1111 in Binary. Let us 
get its decimal value. If it was in decimal, 1111 would be one thousand one hundred and 
eleven, or, 1 + 10 + 100 + 1000, or 1x100 + 1x101 + 1x102 + 1x103. They are all powers of 
10 because it is in decimal or ten digits. In Binary, the number of digits is two, 0 and 1. So, 
binary 1111 in its decimal value will be 1x20 + 1x21 + 1x22 + 1x23, or, 1 + 2 + 4 + 8, or, 15. 
It  works  the  same  way  for  binary  1111111,  or  decimal  127.  So  the  total  number  of  
characters will be less than or equal to 128, numbered from 0 to 127. 

The first consensus standard that came up for representation of English language characters 
in terms of digits, was ASCII, employing seven bits. Computer handles two kinds of basic 
data, number and character. And as we are seeing here, all characters are numbers too, and 
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hence can be handled by binary system in computer. The ASCII code works here as a two-
way  medium.  Through  it  we  translate  characters  into  binary  numbers.  This  enables 
representing language as data for computer. And whenever we want it back in language 
form, computer can counter-translate these preserved numbers back into characters. We 
said,  early  computers  were  predominantly  number-crunching  ones.  These  machines 
gradually started nibbling at characters as computers were getting progressively affordable. 
They first replaced calculators, then typewriters, and then maybe everything. Computers 
started  devouring  large  chunks  of  human  intellectual  efforts  in  all  walks  of  life.  This 
required a ready method of transfiguring characters into numbers, and thus data, and then 
processing this data with rules constructed such a way that allowed us to process them 
according to the laws of language. ASCII played this important role. 

Development of ASCII was going on since1960, though its first commercial use came in 
the form of a 7-bit code for the teleprinters. Bell Laboratories published its first edition of  
this code in 1963, and a major revision in 1967. As we have already seen, the 7-bit code 
allows a total of 128 events to take place in this code system. From these 128, the first 33,  
that is, 0 to 32, are kept aside for the non-printing characters, like newline, tab, space, 
delete, and so on. Obviously, as the use of computers increased and proliferated into every 
possible walk of life, ASCII was progressively proving to be inadequate. This inadequacy 
becomes  more  prominent,  when  we want  to  handle  more  than  one  languages  with  it. 
Proliferation of computer use progressively called for code systems that can handle more 
than one languages, and thus, more than one character sets, simultaneously. And hence 
followed  more  intricate  and  advanced  systems  of  data-character  interchange  systems. 
Unicode is the system that is now the order of the day. But we hardly need to discuss that  
here for the purpose of this book. This section, in a brief sketch, described, how computer  
reads data. But, obviously there are other different forms of data than numbers and text.   

4. Representation of Multimedia Data
Let us start with a picture – how this picture is represented in the computer, in the form of 
graphical data. Let us assume that we are printing the picture on a graph paper. A graph 
paper consists of a regular rectangular array of points, generated through intersections of 
vertical and horizontal lines. Each of these points has specific X and Y coordinates given 
by the order of horizontal and vertical line respectively. So, when the print is ready, we will 
see that some of these points from the array were overlapped by the points from the image, 
and some of the points have remained blank with no point of the image falling on them. 
Also let us assume that, for the time being, that the picture is a line drawing in black. So, 
now, the overlapped points have coincided with points printed in black, and the blank ones 
are the pure white ones. Obviously, as the number of horizontal and vertical lines increases, 
and thus, the number of intersections, the resultant array of the points on the graph will 
increasingly approximate the image better and better. Take this image of the first letter 
from the Latin Alphabet. 
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Obviously, the look of the image is quite kinky and rough. This will progressively become 
a smooth and comfortable one as we go on increasing the number of points, here shown by 
square black dots. In fact the number of lines in the graph grid being sufficiently large, they 
would not even seem as square or something. Even they would cease to look as disjoint 
points, they would seem like continuous regions filled with points as it happens in halftone 
prints of painted pictures. 

Now, let us replace this graph paper grid of points with an electronic screen, for the grid 
the points being replaced by pixels. As it would happen on a rounded rectangular electronic 
screen the pixels that would build the alphabet are black and all other points are blank, that 
is, white. As we have seen in all our prior binary examples, this situation is pretty easy to 
represent in the form of numerical data, if we represent all  ‘black’ ones by ‘1’ and all  
‘white’ ones by ‘0’. Now, usually, the electronic screens have some prescribed formats, like 
‘640x480’ or ‘800x600’ or ‘1024x768’, or for wide formats, ‘1440x900’ or ‘1280x800’. 
So, if the size of screen is 640x480, the total number of points in the array or the total 
number of pixels will be 640x480, that is, 307200. In terms of data, it will be that many 
bits. We know 8 bits make 1 byte. And hence it will take 307200/8 or 38400 bytes of  
memory to represent all the visual data on a 640x480 screen. Some of these bits will carry 
1, and others 0. That means, 38400/1024 or 37.5 Kilobytes of memory will adequately 
represent the line drawing in the form of graphical data meant for computer. 

This example was a black and white line drawing, and hence we used 1 bit data for every 
point – black/white: 0/1. This was sufficient for an adequate representation of the drawing. 
If it was a picture in gray tones, then, say, we can use 1 byte or 8 bits per pixel. And as we 
know, 8 bits can represent 28 or 256 different signals, here, computer screen will represent 
every pixel in 256 different possible gray tones. And 256 different shades of gray seems 
quite adequate in representing a gray picture on the screen. In that case, that data of 37.5 
kilobytes  becomes  multiplied  by  8 and it  is  300 kilobytes  for  one screen-full  of  gray 
picture. If it is a color picture, the situation is structurally the same, only with a different 
factor  of  multiplication.  The  perception  of  color  comes  from  a  mixture  of  different 
proportions of the three basic colors, red green and blue, RGB as they are called. If we take 
8 bits for every color, that means three sets of 8 bits, one each for every color, red green 
and blue. So, we can depict 256 different shades for each of RGB or red green blue. And 
accordingly, the byte size of the picture becomes three times of its earlier size. We are 
taking 3x8 or 24 bits for RGB, in place of 8 bits for shades of gray, to represent each pixel.  
And so the size of the one screen-full of color picture becomes 3x300 or 900 kilobytes. 

If this is what we do for a picture to represent it in terms computer data, video data comes 
the second in line. Video is essentially multiple frames of still pictures shown in quick 
succession such that it creates the illusion of moving images in our brain. And there is  
audio accompaniments with it.  Though there are many layers of complexities involved 
here. The huge bulk of image data that goes into the making of video makes compression  

Page 43



Three. Some Elements of Computing 

of visual data a necessity. And this compression comes in different forms and standardized 
formats. 

The other thing that remains here is the representation of audio data. Audio data has one 
very intrinsic difference with visual data.  The difference is  that all  audio data has one 
dimension of real time involved in it. Audio always happens in real time. Essentially the 
method of representing audio waves in terms of digital data is to collect samples of the 
analog audio at regular intervals and collect the value of the sample signal in that interval. 
The algorithm for doing this is quite complex. In the first place it has to answer, at what 
time  interval  the  samples  should  be  taken,  and  then  how  many  bits  will  be  used  to 
represent the value of a sample. There are many theories and methods involved here. But, 
essentially the logic is quite simple. The real analog data we cannot represent. But we can 
represent the value of the samples in terms of a fixed number of bits. The sampling rate 
and the number of bits we have to choose such a way that the digital data does represent 
the real analog audio quite adequately. And once it does so, the real analog audio becomes 
a string of bits that we can record in computer.  When we want to get audio from this 
recorded data, we have to translate this data back into audio signals, in real time. We have 
to do it at the exact rate of sampling that we used while recording. And now we get a 
rebuilt audio from that digital data, represented in a form that computer can handle. What 
we have discussed in this section about representation of different kinds of data is quite 
elementary. Mano 2003, Rajaraman and Radhakrishnan 2006, Bartee 1991, or Tanenbaum 
2005 give good introduction to these things.

5. A Stored C Program
Now that we are familiar with representation of different kinds of data, let us return to the 
question of a ‘stored program’. A computer works in terms of stored programs. And, we 
know, these stored programs consist of raw data and instruction data. Raw data is what we 
usually call data, and instruction data usually means the commands we issue. The control 
of the whole process through a stored program involves both these two kinds of data. 

Now, let us take one small piece of program, consisting of only ten lines of code. Here we 
numbered  the  code-lines  in  a  table  to  make the  discussion  simpler.  Let  us  name this 
program as ‘add.c’, the ‘add’ part showing what it does and ‘.c’ being the usual surname of  
all C programs. This program adds ‘2’ and ‘3’ and gives the result. For those who are not 
familiar to programming, this is written in C. C is a major programming language. Some 
prefer to call C as the mother of all other programming languages. There are numerous 
books on C. Kernighan and Ritchie 2002 is an all time classic. Prata 1986 is a good help 
for beginners. This program ‘add.c’ involves exactly ten lines of code.

01 #include <stdio.h>

02 int main(void)

03 {

04 int x, y, sum;
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05 x=2;

06 y=3;

07 sum=x+y;

08 printf("\n 2 + 3 = %d \n",sum);

09 return 0;

10 }

Let us discuss this C program ‘add.c’ line by line. Line #01 tells the program to include the 
library file ‘stdio.h’ within its body. It is outside the scope of this book to go into the details 
of a library file, but, let us know, simplistically, a library file is a collection of subprograms 
that is used to develop software. Libraries contain some common additional code and data 
that provide services to any individual program, whenever it needs. Including the library 
file within a program, is like, say, sending a salesman to an unknown country and inserting  
a dictionary of the language of that country within his bag. In this particular case,  the 
name, ‘stdio.h’ suggests what this library file does. This file is concerned about standard 
input  and  output,  ‘std’  for  ‘standard’  and  ‘io’  for  ‘input-output’.  Again,  avoiding 
unnecessary  complications,  we can  say,  it  makes  some sense.  Enabling  ‘add.c’ to  run 
involves taking inputs like ‘2’ or ‘3’, and producing an output like ‘5’. The part ‘.h’ in the 
file-name ‘stdio.h’ comes as a surname of ‘header’ files, as these library files are called. 

Line  #02  is  a  statutory  declaration  of  all  C programs.  Simplistically  speaking,  any C 
program involves a function, a function that does something and has some value. And here 
‘main ()’ is the function. This function ‘main ()’ is the entry point of any simple C program, 
from where the chain of execution starts. And the word ‘void’ indicates that the function 
‘main ()’ in this case takes no parameter. The word ‘int’ in ‘add.c’ stands for ‘integer’. That 
means,  the  mathematical  entities  involved  in  the  function  ‘main  ()’ will  have  integer 
values. Line #03 and #10 are the starting and ending parenthesis for the ‘main ()’ function 
in the program. These two define a block, within which the action of the program takes 
place. 

Line #04 tells that the function in this program will involve three variables. Their names 
are ‘x’, ‘y’, and ‘sum’. This line also tells that that all of them will involve only integer 
values, shown by the word ‘int’.  This means, this program commands the computer to 
demarcate three slots in its memory, and name them as ‘x’, ‘y’, and ‘sum’. These three 
slots now become the addresses for these three variables, addresses where their values will 
be kept. And it additionally tells the computer that these three slots will hold only integer 
values in them. In line #05 and #06 the values of ‘x’ and ‘y’ are assigned. Line #05 tells the 
computer to put the numeric integer value ‘2’ in the slot named ‘x’. And line #06, similarly, 
tells to put the value ‘3’ in the slot named ‘y’. The command for addition is given in line 
#07. It tells the computer to add ‘x’ and ‘y’, that is, take the values kept in ‘x’ and ‘y’ and  
put them together in the slot ‘sum’. The variable slot  called ‘sum’, from now on, will 
represent the togetherness of ‘x’ and ‘y’, that is, the sum of the values kept in ‘x’ slot and 
‘y’ slot. 

Page 45



Three. Some Elements of Computing 

Line #08 tells the computer to print the result of the summation of ‘x’ and ‘y’, or the value  
of the variable ‘sum’, that is, the integer value kept in the memory slot ‘sum’. The other  
details of this line specifies the format of this output line. The ‘\n’ part tells to start a new 
line before giving the output, the second ‘\n’ tells to leave one line of open space after the 
output. And the ‘%d’ part tells to give the output in the integer-value format. So, now, if we 
run the program we will get the output: “2 + 3 = 5”, with one line open space on both the 
top and the bottom of the line. 

So, now, we have completed a C program that can add ‘2’ and ‘3’ and display the result.  
But,  the problem is,  this  program, exactly  in  this  form, will  never  run.  Why? We are 
coming back to that in a bit, when we talk about compilers. But, before that, let us explore 
the novelty of this stored program, as we showed this in the Von Neumann Architecture of  
stored program computers. Let us note the difference between summing ‘2’ and ‘3’ on a 
calculator and doing the same thing with this C program, ‘add.c’, on a computer. As we 
said, in case of doing it with a calculator, the control remains with the human subject. This 
human subject controls the process of addition: when to start, where to start, how long to 
continue, through what steps, where to call it a day, and deciding the end product as the 
result.  Whereas,  in  case of  ‘add.c’,  all  these control  elements  are vested to  the stored 
program. As many times as we may run the program, every time this control job will be 
done by this flawless deputy of a program according to the commands once written there in 
‘add.c’. This is the novelty and the pride of place of computer among all the machines 
produced till date by human civilization. For the first time we can vest the control of the 
process on the machine by means of a stored program. In fact every day we are doing that, 
in millions and millions of programs. 

6. Low Level and High Level Language
Just now, in the earlier section we said that, this program ‘add.c’ will not run, though,  
obviously, ‘add.c’ has no particular flaw of its own in terms of C syntax, grammar or logic. 
Actually, this program was never meant to run. Like all ‘*.c’ files, it was meant just to be 
read and written and edited and corrected and debugged. This program, or any program 
like  this,  does  never  run.  These  are  only  text  files,  carrying  some  C  sentences  and 
statements,  just  the  way  a  piece  of  English  text  carries  some  English  sentences  and 
statements. The programs that run are altogether of a different kind, they are not text files,  
they are executable files. But, first let us understand the difference between High Level 
Language and Low Level Language before we go into compilers. 

The term ‘High Level’ does not signify any superiority of this language over the ‘Low 
Level’ ones. It shows a higher level of abstraction over the layer of machine languages. 
There are many intricate details and differences among the categories of machine code, 
assembly language and things like that. But, for the time being, let us use the two concepts: 
‘human-understandable’ and  ‘machine-executable’ in  place  of  those  two  terms  ‘High 
Level’ and ‘Low Level’. Obviously, it is a bit oversimplified. But that does not hamper us 
in this discussion. The program ‘add.c’ in the last section represents high level ‘human-
understandable’ code. Those ten lines of code in ‘add.c’ were written by a human being, 
meant to be read and understood and corrected and debugged by human beings. This is, 
obviously, human-understandable. In fact, that is the whole raison d’être of the high level 
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programming languages: why they were made the way they were made. They are meant to 
be written and understood by human beings. But, then, there is obviously another kind of 
language that we cannot understand. To understand its nature let us try to read something 
that cannot be read.

^?ELF^A^A^A^@^@^@^@^@^@^@^@^@^B^@^C^@^A^@^@^@ ^D^H4^@^@^@^@^@^@^@^@^@4^@Ђ  
^@^H^@(^@^]^@^^D^HH<81>^D^H^@^@^@^@^@^@^D^@^@^@^D^@^@^@P<E5>td<D0>^D^@^@ ^D^H ^D^H^\^Є Є
@^@^@^\^@^@^@^D^@^@^@^D^@^@^@Q<E5>td^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^
F^@^@^@^D^@^@
^@/lib/ld-linux.so.2^@^@^D^@^@^@^P^@^@^@^A^@^@^@GNU^@^@^@^@^@^B^@^@^@^F^@^@^@
^@^@^@^B^@^@^@^D^@^@^@^A^@^@^@^E^@^@^@^@^@^@^@^@^@^D^@^@^@<AD>K<E3><C0>^@^@^@^
@^@^@^@^@^@^@^@^@^@^@^@^@^A^@^@^@^@^@^@^@^@^@^@^@^@^@^@0^@^@^@^@^@^@^@<BA>^
A^@^@^R^@^@^@)^@^@^@^@^@^@^@9^@^@^@^R^@^@^@^Z^@^@^@<B8><84>^D^H^D^@^@^@^Q^@^N^@^
@__gmon_start__^@libc.so6^@_IO_stdin_used^@printf^@__libc_start_main^GLIBC_2.0^@^@^@^@^@^B^@^B^@^A^
@^@^@^A^@^A^@^P^@^@^@^P^@^@^@^@^@^@^@^Pii^M^@^@^B^@B^@^@^@^@^@^@^@B^@  ^@^@^@^@ 
2  +  3  =  %d  ^@^@^AESC^C;^X^@^@^@^B^@^@^@<FF><FF><FF>4^ 
@^@^@0<FF><FF><FF>P^@^@^@^T^@^@^@^@^@^@^@^AzR^@^A^AESC^L^D^D<88>^A^@^@^X^@^@^@^\^@^
@^@<E4><FE><FF><FF>^E^@^@^@^@@

This is nothing but the executable binary file called ‘add’ that we generate from the code  
‘add.c’ by a compiler. This ‘add’ is an executable file. That means, it runs, what ‘add.c’  
cannot. We are going into those details shortly. But, I opened this binary file with a text  
reading package called ‘less’ and copied a portion, only to represent in a way the drama 
involved here. This binary file does run, but cannot anymore be read. Obviously, it is a tall  
order for us, human beings, to read, write or understand this. But, computer reads this file  
and runs it very easily. So, a machine understands it adequately well, adequate to run and 
execute it. This is an executable file and it is not in any way any text meant to be read or  
written by human beings. It may catch our eyes that in the ending section of this gibberish, 
we get something that is already very known to us. The problem that we are trying to solve, 
as  quoted  in  this  inhuman  piece  of  language:  “2+3=%d”.  This  gibberish  actually  is  a 
portion from an executable file that we generated with a Compiler from the C code of 
‘add.c’. An executable file that, when executed, will add ‘2’ and ‘3’, and print out this 
result in the prescribed format of ‘%d’. In this paragraph we have used two new terms, 
‘decompiler’ and ‘compiler’. Now let us know their functions. 

7. Compiling Source Code
By definition,  a  Compiler  is  a  computer  program that  translates  a  text  written  in  one 
computer  language,  say  the  Source  Language,  to  another  computer  language,  say  the 
Target Language. Usually, the original sequence in the Source Language is called Source 
Code, and the translated sequence in the Target Language is called the Object Code. This  
is, obviously, a very general definition of what Compiler is. Commonly, a compiler is used 
to translate Source Code (anything like ‘add.c’), written in High-Level languages, to an 
Executable  file,  written  in  Machine  Language,  that  is,  something  understood  by  the 
machine.  The  machine  then  runs  the  commands  and  instructions  given  there  in  the 
executable file. In computer science an executable file means a file whose contents are 
interpreted as a executable program by a computer. This is not a piece of text that is meant  
to be read or written by human beings. In some cases, even text files may be executable  
too, as a list of commands and interpretations that get chronologically executed by the 
machine. They are the so-called shell scripts. Another complexity also remains concerning 
the Object Code. In some cases it may call for some kind of Linker operation. But, we are 
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not going into those details here. We just want to understand compiling in the most plain 
and simple way possible, only in order to enable us to understand what Source Code is, and 
how it becomes in reality Free or Captive.

Let us go directly to the case of the C code, ‘add.c’. This is not an executable program, it  
does not run. It is a text file. So, now, how to get a program, or, an executable file from this 
piece  of  text  held  in  a  text  file  called  ‘add.c’?  On  different  Operating  Systems,  with 
different  compilers  there  are  a  lot  of  different  ways  to  generate  the  program  or  the 
executable file. The thing that was quoted in the earlier section from the program called  
‘add’, was from a binary or executable file generated on a Fedora 7 GNU-Linux Operating 
System, with a compiler called GCC. The command that created the executable file was:

gcc -o add add.c 

The ‘gcc’ part of the command calls the GCC program into its action of compiling. The 
‘-o’ part specifies the name of the executable file. And obviously, ‘add.c’ is the name of the 
code file that we want to compile. This command makes GCC generate an executable file 
called ‘add’. This is an executable file, and hence it can run. It can be run with a command, 
issued from within the directory where it is:

./add

When run, it gives this output:

2 + 3 = 5

So,  the  compiler  works  in  one  direction:  it  transforms  human-understandable  code  to 
object code or machine-executable programs. And the decompiler works exactly in the 
reverse direction, transforming binary or executable programs into human-understandable 
high-level code. Later, when we discuss about the rights of an user of a piece of software, 
we will need both the concepts of compiling and decompiling. 

8. Source Code, Object Code, Portability
The technical difference between these two forms of code, source code and object code, is 
now clear.  But, this  is going to be very important for us later, when we enter into the  
principles of Software Licensing. So, let us make things a bit clearer here. As we will see  
later, in the context of a license, software can be distributed in both the forms, Source Code 
and Object Code.

Gradually, with the advent of international trade, jurisdiction of the copyright concepts and 
laws began to transcend borders, and thus, it became necessary to standardize these things 
on an international plane. The idea of ‘copyright’ originated from the first real copyright 
act  Statute of Anne passed in 1710 in Britain. Then copyright act  came up in different 
countries, but they all applied locally, that is, within the country. On the international level, 
one pioneer  venture in  this  area  was the ‘The Berne Convention  for the Protection of 
Literary and Artistic Works’, an international agreement about copyright laws. It is usually 
called  as  ‘Berne  Convention’.  It  took  place  in  Berne,  Switzerland  in  1886.  Berne 
Convention represented a kind of consensus position about market of ‘thought products’ in 
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the West. From a Cultural Studies point of view it may be interesting to note that it was 
none other than Victor Hugo who took a leading role in the organization of the Berne 
Convention and in a way it was a fusion of two concepts. One was the ‘right-of-the-author’ 
or ‘droit d’auteur’. This concept is obviously bigger in its cultural scope than the strict 
economic connotations of the second concept of ‘copyright’ from the Anglo-Saxon world. 
The time of the Berne Convention becomes more important in its culture studies surplus 
meanings if we cross-check it with the European history. The British Glorious Revolution, 
that changed the face of the world for good, was just complete in every sense at the time of  
Berne Convention. And, at this moment, obviously, the balance of European power was in 
an absolute tilt against the “Norman” in favor of the “Saxon”, to use the timeless Walter 
Scott paradigm of Robin Hood and Ivanhoe. Obviously it was more than a century before 
the Rule Britannica would leave the scene in a total exit and it will be a solitary show of 
the “New World”, the US of A.

According to the Berne Convention, copyrights for creative works are not subject to any 
registration or application or something like that. It is entirely automatic, even if there is an 
absolute lack of assertion or declaration by the author. The moment the work is complete, 
written or recorded on a medium, the author is by default entitled to to copyrights in the 
work, or to any derivative work, in any country under the Berne Convention. Only an 
express and explicit declaration of renunciation or disclaiming by the author can negate 
these rights, at any point of time before the copyright expires. During the 1990s, WTO, 
World-Trade-Organization, and TRIPS (Agreement on Trade Related aspects Intellectual 
Property Rights) tried to bring the realm of computer software under a strong surveillance 
of copyright laws. Any country that wanted to become a member of WTO was required to 
sign  TRIPS.  And  it  was  obligatory  for  any  TRIPS  signatory  to  conform to  the  laws. 
According to  TRIPS,  the copyright  laws apply to  both the forms of  Source Code and 
Object  Code.  In  the  market  reality  of  computer  software,  the  proprietary  software 
companies release their product in the form of object code. They keep the source code 
hidden – the source code that was actually compiled to produce this object code is kept as a 
trade secret. There are many more layers of complexity here: later we will go into the  
details of the copyright laws. For the time being let us make the dichotomy between object 
code and source code a bit clearer, and what real difference it generates in the market. 

We have already witnessed a compiler, GCC, in action, when we transformed our source 
code into object code. The end product was an executable file or binary file, or, in that 
sense, an object file. An object file is a file used for storing the compiled object code and 
data related to it, after the compiler compiles the source code. Without going into many 
related additional complexities,  we can say that  these object  files  contain the machine 
code, that is, instructions meant for the machine, instructions that enable the machine to 
run and execute the things that we intend it to do in our source code. Object files can come 
in various file formats. Gradually some particular formats like COFF, Common-Object-
File-Format,  and  ELF,  Executable-and-Linkable-Format,  have  become standardized,  by 
formulating and defining these formats,  and using them on various  kinds  of  operating 
systems and machine architectures. As their names suggest, COFF and ELF contain the 
executable machine code, and all the linked libraries and all that they need to run.  

Actually, before the very advent of ‘portable’ operating systems like Unix, every computer 
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had its own brand of Object File. There are various kinds of machines and architectures. 
And each one is different from the others. Earlier in this chapter too, we wanted to give 
hints  about it.  But,  now, as we proceed, we are going to discover some very practical 
implications of these things in the coming chapters. In an oversimplified way, computer 
architecture is the fundamental structure of computer operation. It is built in layers. The 
lowest layer is obviously the hardware, that is the pieces of metals and plastic, the wires, 
and most importantly, the silicon chips. A myriad of different kinds of devices that, when 
put together, under the supervision and direction of operating system, become a working 
computer. But, without all the codes and instructions working inside them, these devices 
are dead. 

Immediately  over  the  hardware  layer  comes  the  layer  of  firmwares  or  instructions 
embedded within the pieces of hardware, if any. Just above this layer of firmwares is the 
work-space of the device drivers. When any piece of hardware is attached to a machine, the 
operating system, in order to use this device, needs a command set that is called the device 
driver.  Firmware and device  driver  together  enable the  operating system running on a 
machine to work with the devices attached to computer.

Just above this layer of firmware and device drivers comes the layer of assembler. This 
assembler, in a nontechnical way, is a kind of an utility that translates the codes in the low 
level  assembly  language  into  machine  codes.  These  machine  codes  are  the  very 
instructions that are finally and actually run by the operating system through the hardware 
devices when computer operates. 

Then comes the kernel layer. Kernel is the central-most component of the operating system 
that actually is responsible for the allocation and use of the resources. By ‘resources’ we 
mean the totality of all the devices.  Kernel allocates them to all  the running processes  
within operating system. Every running software generates one or more processes within 
operating  system.  And  so,  by  allocating  the  resources,  kernel  actually  enables  these 
processes  to  work.  At  any  point  in  time,  several  different  programs  maybe  running 
simultaneously together. Say, a browser is displaying some pages from the Net, a word-
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processor is creating pages, a graphics program is drawing a diagram, and a multimedia 
program is playing some music. All these programs are generating a plethora of processes, 
which are all simultaneously demanding the resources of the CPU, the RAM, the hard-disk 
and everything. And all these must work without any of them disturbing any other. Kernel 
actually  communicates  between  hardware  and  software  components  of  the  working 
machine and enables the whole computer system to run, together with all its component 
processes.  So,  now  the  point  is,  whenever  we  are  referring  to  the  term  ‘computer 
architecture’, that means the whole conceptual structure shown in the diagram. And every 
layer  in  the  diagram is  related  to  its  upper  one in  a  causal  chain.  If  we start  from a 
particular  make  of  CPU  and  other  related  devices,  obviously  the  firmware  would  be 
specific to it. And so will be the drivers, and thus the whole structure would become very 
specific. Like the popular architecture categories of i386, PowerPC, Sparc, and so on. 

The ‘i386’ category is one of many ways like ‘Intel386’, ‘i386’, or simply ‘386’, to refer to 
the series of microprocessor chips made by Intel, used as CPU since 1986. The generic 
name of the ‘instruction set’ for this genre of CPU is known as ‘x86’. Starting from the 
lowest layer of this instruction set, through all the layers in the diagram, this instruction set, 
together with all the specific instruction sets related to the specific components, generates a 
particular kind of architecture. Another important example of architecture is ‘PowerPC’. 
This  is  another  CPU  architecture  of  the  kind  called  RISC,  Reduced-Instruction-Set-
Computer. This is a kind of CPU designing strategy where the instructions are do-less, do-
simple and thus do-fast type.  There are a lot  of architectures that fall within the RISC 
category, but this is obviously outside the scope of our discussion. PowerPC was created 
by AIM, or Apple-IBM-Motorola alliance, in 1991. Though it was primarily intended for 
the  PC,  PowerPC became quite  popular  in  embedded systems.  Sparc is  another  RISC 
architecture  originally  designed  by  Sun  Microsystems  in  1985.  These  are  just  a  few 
examples of architectures, there are many more, and many other that follow one of the 
generic architectures, though deviate in minor ways.

That a program runs on one particular architecture does not necessarily mean that it will 
run on other architectures. Here, by the word ‘program’ we mean the executable aspect of 
the program, or object code. Take our ‘add.c’ source code for example. From source code 
‘add.c’, with GCC, we compiled object code named ‘add’. The binary object code was 
built in such a way that it can run on that Fedora 7 GNU-Linux environment on a PC. Even 
on a PC, in some other environment like MS-Windows Vista, XP or 95, or MacOS, it will  
not run. And obviously it will not run on some other architecture like PowerPC or Sparc or  
something. But, the portability of source code is here that, the same source code ‘add.c’ can 
be compiled on different systems in different ways to make the object code run on any 
architecture or any operating system. So, the point is that, source code remains the same, 
while  the  machine-understandable  instructions  imbibed  within  object  code  become 
different depending on the architecture or OS environment, for which it was compiled.  
This is the issue of portability that is going to assume an important aspect in this book. 

Portability is one of the key concepts of programming in a high-level language like C. By 
this feature of portability, the same code-stock is able of being reused, in place of creating 
a new set of code when moving software from one environment or architecture to another. 
This is an important point in terms of our discussion in the coming chapters. Object code is 
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never portable. It is specific to one environment or architecture. Though, some combined 
kind of object code is possible. Combined code means more than one set of object code put 
together, enhancing its versatility. But it is way out of scope of our discussion. And, the 
point is, object code hides the source code behind it. So, some object code that runs on one 
architecture or environment, is useless in some other setting. And more important is that,  
because it hides the source-code, nothing can be done with the object code if there is a 
change in perspective in terms of architecture or operating-system. But, source-code, like 
our ‘add.c’, is very plainly understandable to anyone who knows the grammar of C, and 
hence can be easily modified, customized, and recompiled to suit any changed perspective. 
And it opens up ways for new explorations too, when someone wanting to add ‘4’ and ‘5’, 
or subtracting them, and so on, can easily tweak this code and reuse. And this modified 
source-code again can be compiled according to any environment or architecture.

Let us take an example. When one buys a copy of the Microsoft word-processor ‘MS-
Word’, one buys object code. Not only this is meant to run only on one architecture or 
environment, the source code behind this object code is unknowable too. So, no one can 
modify, improve or customize it by changing source code. While another word-processor 
‘OpenOffice.org-Writer’ is available in both its versions, source code and object code. This 
is a FLOSS piece of software. As we will learn it in the later chapters, this is obligatory for  
software under GPL to make the source-code available. So, any user of this software, if he 
has the ability, is free to change it, or, modify it according to any need of architecture or 
environment or personal taste or anything. And more than that, as we will see later, that  
modified version too can be distributed at will, both object code and source code. In the 
coming chapters we are going take up this issue again and again, while discussing GPL and 
FLOSS. 

9. Layers of Hardware and Software
After the discussion of a model of layers within computer architecture, let us now elaborate 
the layers within the space of man-machine interface within computer. Within an operating 
computer, when some work is getting done on the machine, actually a very large number of 
activities  are  happening  simultaneously  together  in  different  layers.  They  include 
multitudes  of  user-level  software  through  the  hardware  layers  of  silicon  chips,  metal 
connections and plastic and wires. 

First, let us understand a little, what is the role of a program or a group of programs in an 
operating system. Let us remember, this operating system is again a program, or, a group of 
programs. A simple definition of  operating system or OS is something like this: the first 
piece of program (or, a collection of intertwined programs) that operates on a machine, and 
makes the machine usable to all other later programs to follow. The word ‘usable’ means a 
lot of things. It means that operating system, OS, is the piece of software that manages the 
sharing of the resources of a computer, and provides users with an interface to access the 
resources.  Every machine is  one particular assembly of different  available internal and 
external components. Every component has its own way of working. OS looks after every 
possible mode of working of every component in a machine through all the drivers that  
literally drive the components. When some user wants to work on a particular component, 
the user can forget all the intricate details of the way of working of that particular piece of  
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component. OS looks after these details. 

OS generates the very man-machine interface that allows human subjects to go on working 
with the machine. OS makes the two ends meet. It processes system data and user input in 
a parallel and simultaneous way. OS has to do it that way, because, OS is the sole authority  
that allocates and manages tasks and internal system resources among different processes. 
These processes are always running within a working machine as a service to users using 
the  system  and  programs  running  on  the  system.  Users  of  applications  are  oblivious 
towards this intense back-end operation almost all the time. In fact, the very job of OS is to 
generate this comfort of oblivion for users of application programs. But, whether users 
know it or not, at the foundation of all running software, OS is endlessly and ceaselessly 
going on performing the very basic tasks of controlling and allocating memory, prioritizing 
system requests, controlling input and output devices, facilitating computer networking and 
managing files. 

For any modern OS, computer works in a multi-user, multi-task mode. That is, even if 
there is only one human user, so many programs do run together, for the maintenance, 
well-being and efficiency of the system: both the system programs and the user programs. 
And in many cases, there are more than one users using the system, with many different 
programs. All these programs are sending their demands to the same CPU, or the same 
pool of memory devices. Like say, the text someone is writing, and the music someone else 
is playing, and some video another is downloading from the Net, are all working through 
the same CPU. And all the programs are writing and reading data to the same hard-disk. 
And more important is the fact that, CPU can do only one thing at a time. So, it calls for a 
kind of breaking of every period of time into infinitely large number of small segments.  
Once this segmenting is done, it is easy to allocate one segment each to one process at a  
time. Then this allocation just goes through a continuous rotation for all the processes one 
by one. We do not keep it in mind. That is possible only because OS does it for us. It takes  
away all the trouble of remembering all the intricate hardware details, generating an easy-
understandable  virtual  structure  of  the  machine.  This  allows  us  to  use  it  comfortably. 
Tanenbaum 2002 deals this whole thing quite exhaustively. 

Layers from Hardware to Software within an Operating Computer

Accounting ... Railways ... Internet ... Application Layer

Compiler Editor Command Interpreter
Central Layer of 

System Programs
Operating System

Machine Language
Hardware Layer of 

Physical Components
Silicon, Metal, Plastics

Now, with this scheme, let us understand the deep layers within the working machine. The 
lowest layer is the Hardware Layer of Physical Components. That includes the chips, the 
transistors, the connectors, the boards, the wires, and all. This is the layer where Machine 
Language or Machine Code works. Machine Language is a system of instructions that is 
directly  executed  by  the  CPU  of  the  machine.  In  a  sense,  Machine  Language  is  a 
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programming language too, that works with the lowest level of abstraction for representing 
the commands. We know that, any program, however big or small, smart or dumb, is a list  
of commands to be executed by the machine, and some data relevant for doing this. And in 
this layer, this whole work is done at the lowest level of abstraction. This Hardware Layer 
is actually divided into sub-layers of machine details and the most elementary form of  
communication.  This  communication  works  through  a  pre-language  that  sends  the 
commands and instructions directly into hardware. This is the world of micro architecture 
and machine language residing in silicon chips and wires and metal junctions and all those. 
This is the layer that we can totally forget while running a machine – and OS makes that 
possible. 

The next layer is the Central Layer of System Programs. This is the layer of operation of 
OS. OS enables the system programs to run, while OS itself is the most primal and central  
system program. This layer of system programs comes above the lowest layer of Physical 
components. This layer is divided into two sub-layers. OS is the lower sub-layer here. OS 
actually creates a kind of blanket over the hardware details, and generates a virtual space,  
as we said. This is a space that is intelligible and understandable by human beings. This 
space enables users to create and use programs. Three other things are mentioned in this 
layer: Editor, Compiler, and Command Interpreter. 

Editor means  a  simple  text  editor.  That  means,  not  the  usual  word-processors  like 
OpenOffice.org Writer or MS-Word. For this  kind of editor,  text is simply an array of 
characters, without any special formatting attached to them, like ‘bold’ or ‘italic’, this font 
or that font, and so on. Earlier in this chapter we wrote a C program, ‘add.c’, and compiled 
it into an executable or binary file ‘add’, and then ran it. What things we used for it? To 
write  the code,  we needed editor,  something that  edits  simple and plain  text.  Then to 
compile this code we needed compiler. In this particular case compiler was GCC. To run 
these programs, to invoke editor or compiler, we issued several commands. When the C 
code ‘add.c’ was compiled into an executable file called ‘add’, we gave a command ‘gcc -o 
add add.c’. To run ‘add’, the command was ‘./add’. When we are issuing these commands, 
who is taking these commands and performing as commanded? 

This is command interpreter. When we gave the command, ‘./add’, and pushed the ‘Enter’ 
key,  this  meant,  take  the  executable  file  ‘add’ from  the  current  directory  and  run  it. 
Someone searched the current directory, found ‘add’ and then executed it. This someone 
was command interpreter. Command Interpreter, usually called a shell, is the middleman 
between us and the OS. Though, the problem is, in a lot of cases, the average user is hardly 
aware of this omnipresent shell or command-interpreter. This is particularly so in the case 
of the MS-Windows systems. The GUI, Graphical-User-Interface, the way of doing things 
with pictures and mouse, in place of the ways with typing commands, the CLI, Command-
Line-Interface, tries a lot to hide the workings of shell or command interpreter. This is  
particularly true in case of the proprietary systems like MS-Windows. We will come to this 
point of GUI and CLI in the next section. 

Above this central layer of System Programs comes the third and final layer of Application 
Software. Usually this is the layer where the realm of a common computer user starts and 
ends. Though it is very hard to define a ‘common computer use’. Here we mean all those 
things that concern an average user, like the word-processor, the database application, the 
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browser, the music player, the movie player, and so on. Later we will see, defining this 
user,  and then  interrogating  that  definition  will  be very much within  the scope of  the 
discussions of political economic and cultural questions in the coming chapters. For now, 
let us settle it here that, this third and final Application Layer is the layer in use pretty 
everywhere: in railways ticket counters, in banks, or while surfing the Net. 

10. GUI and CLI
A UI or User-Interface allows people to interact with computers and their peripherals. GUI 
and CLI – these two are the two basic UI things before us.  In a GUI we work with pictures 
and  a  mouse,  and  hence  it  is  called  a  graphical  UI  or  GUI.  It  generates  a  graphical  
environment made of icons, widgets, windows, where we can point with a pointing device 
like a mouse and thus work with it. These graphical elements like icons, widgets, windows 
are used in conjunction with text, wherever necessary. A ‘widget’, literally meaning a small 
mechanical  device  or  control,  like  a  gadget,  is  a  technical  term  in  the  realm of  GUI 
literature. It is a basic element of a GUI. A widget is a visual building block that constructs  
all  the  components  of  the  GUI  environment.  When  working  with  a  mouse  in  a  GUI 
environment one of the most frequent things that we do is clicking buttons. These buttons 
are widgets. 

There are different kinds of buttons, like a ‘toggle button’ that can take any one of the two 
states at any moment: ‘on’ or ‘off’, or a ‘check box’ where a tick appears  when we select  
the option represented by the check box. And it is a toggle button too in the sense that it is  
either selected or not. There is a ‘radio button’ which represents one of several predefined 
options and it is a toggle button too, changing the shape or color when we click it to show 
which  state  it  is  in.  All  these are  examples  of  widgets.  Other  frequently used widgets 
include a ‘slider’ indicating a variable value, a ‘scroll bar’ that is a kind of slider that shows 
the coordinates of the position within a window, a ‘list box’ that displays a list, or a ‘drop-
down list’ that drops a list when we click on it. The windows are the primary things that we 
interact with when in a GUI environment. These windows are made of many widgets. 

These widgets serve functions of different kinds. Like, say, the ‘windows’ or the things that 
open on the desktop, the ‘menus’ or the lists full of different elements that can be clicked 
with a pointing device like the mouse, the ‘radio buttons’ or the ‘check boxes’ or the the 
‘icons’ or the small pictorial representation of different elements of the machine or the 
devices connected with it, like the CD-Drive or the printer. These widgets create the visual 
environment. These widgets are kind of virtual switches that we click with the pointing 
devices like a mouse or a trackball, in contrast to real physical switches that we click with  
our  fingers  or  otherwise.  This  ‘virtual  dimension’ issue  will  come  back  in  our  later 
discussions. 

In contrast to the GUI, the CLI, Command-Line-Interface, allows a user to do the same 
things  by  typing  in  different  commands.  We have already  experienced  some ways  of 
working in  a CLI in  working with ‘add.c’. We issued different commands invoked the 
compiler GCC to compile object code that we named as ‘add’ from source code ‘add.c’, 
and ran this binary called ‘add’. We did all this in a CLI. All the command that we used 
were typed in  on the command prompt and were interpreted and executed by shell  or 
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command interpreter. The CLI is the method of interacting with the objects, the files, the 
programs, and the OS as a whole, through typed-in commands. 

A CLI usually works in a terminal, obviously, where we can work with keyboard and text. 
In a CLI, every time we issue a command, we end it with hitting the ‘Enter’ key that enters  
the command into computer. Here, as we can see, directly the text signs are used, without 
using any visual sign. From those extremely early days in the life-story of computers, say 
around 1960, much before the GUI was invented at all, this CLI was the most primary 
means  of  user  interaction  with  the  computers.  The  CLI  allows  the  users  to  issue  the 
commands  in  a  terse  and  precise  way,  along  with  the  parameters  and  options  of  the 
commands, obeying the syntax rules of shell or command interpreter working behind the 
command prompt. In fact, if seen this way, the presence of shell is an implicit one in a CLI 
too,  not  an explicit  one.  With some special  commands,  in  some special  situations,  the 
presence  of  shell  becomes  conspicuous.  But  this  implicitness  of  shell  or  command 
interpreter in a CLI becomes a full-fledged and elaborate hiding in the case of a GUI. 

There  is  another  possibility  here:  that  of  GUI-CLI.  This  happens  when  within  a  GUI 
environment, we open a terminal window, and within this terminal we type in commands. 
Though it is a GUI, we interact with it in a CLI manner. The terminal window is made with 
widgets, exactly the way any other window is made. The essay, Das 2005, “Tongue to 
Fingers: Colonizing IT in a Postcolonial World” looks into the politics of mentality. The 
GUI-only environment on the computer while a student is getting trained makes her/him 
unduly dependent on ‘mediation’. The GUI things allows one to work only with those 
options which are always already built into these GUI environments, the environments that 
were mediated through the software engineers that created it. While the CLI environment 
intrinsically motivates the student towards a higher level of innovation and customization. 
And so a good choice is GUI-CLI, with the comfort of a GUI and the flexibility of a CLI. 

Section 11. Software: FLOSS or Other
In our times, using computer means using software. Software, as we said, has different 
forms and purposes,  meant for different layers in the hierarchy that starts  from micro-
architecture and hardware components and ends in the user domain. Now, this book is 
focused on FLOSS, and what is FLOSS software? It is better to start the definition the  
other  way round,  that is,  from the other  of  FLOSS software  – the proprietary kind of 
software.  Let us make it  very simple.  For users of the Microsoft products, using these 
pieces of software on a machine involves at least two layers. One is the OS layer. For the  
users of the Microsoft products this layer consists of, say, Micrsoft Windows XP or Vista, 
and related packages that enable this OS to run. Another layer is made up of user level 
applications,  like  Microsoft  Office.  Other  possible  and  frequent  user  applications  are 
browsers like Internet Explorer from Microsoft, or Graphics things like Adobe Photoshop 
from Adobe, or multimedia packages like Windows Media Player from Microsoft, and so 
on for different kinds of activities. 

And on a FLOSS system, like the one on which this book is getting written, the OS is 
Fedora 12, using OpenOffice Writer for writing, and graphics packages like OpenOffice 
Draw,  Xfig  and Gimp for  creating the diagrams.  For  multimedia  there  are  things  like 
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Mplayer,  Exaile,  or  Rhythmbox and  so  on.  But,  where  lies  the  difference,  except  the 
difference in brand-names? 

The difference, really, is much bigger for the pieces of software in the second group. The 
difference starts from the deepest software level, that is the level of kernel, just above the 
hardware layers. In case of these FLOSS pieces of software operating through particular 
package-distribution systems like Fedora, the name of this kernel is Linux. This kernel is 
licensed  under  GNU GPL.  GPL provides  any  user  of  this  kernel  four  different  kinds 
freedom. The first freedom is to run and use it. The second freedom is to study how the 
program works and modify it to suit the user’s needs. The third freedom is the freedom to 
redistribute  copies  of  this  kernel  to  anyone  who  wants  it.  The  fourth  freedom  is  the 
freedom to improve the kernel and redistribute the improved copy. 

And this is very different with the Microsoft EULA, End-User-License-Agreement, which 
the Microsoft products are licensed under. Only the first freedom, or freedom to run and 
use it is granted there, that too, in more cases than not, under many restrictions. Here the 
Microsoft example was used, but it is true for all proprietary software, though with many 
variations on the theme of restriction.  The freedom to modify or improve is  not at  all 
possible  there,  in  the first  hand, because they are all  closed-source.  When someone is  
purchasing a copy of Microsoft Windows or Microsoft Office, actually a copy of object 
code is getting purchased. For them, source code is closed. And obviously, rules of the 
proprietary software market rules out any kind of redistribution. 

For FLOSS software, the aspects of freedom are not just true for the kernel, they are true 
for every single package. Though there are variations of license, and many differences in 
interpreting freedom. We will come back to these things in fullest possible details later in  
this book. There are quite a lot of licenses that are recognized under as FLOSS, Free-Libré-
Opensource-Software. Later we will get familiar with some of these details, and how they 
are all related to GPL in terms of genealogy, and what it all means in terms of ethics or  
right,  and also in  terms of market  or capital.  But,  for  the time being this  rudimentary 
definition will work for us. In the next chapter we will start exploring the history of Source 
Code, how it was all open in the age of primitive accumulation of computing knowledge, 
or primitive FLOSS, as we called it. This was before people started trying to close the free 
and open tradition of cooperative knowledge. 
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